Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 739037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594341

RESUMEN

Background: Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods: Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results: Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion: Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.


Asunto(s)
COVID-19/terapia , Convalecencia , SARS-CoV-2/inmunología , Seroconversión , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/sangre , Donantes de Sangre , COVID-19/sangre , COVID-19/inmunología , Femenino , Humanos , Inmunización Pasiva , Cinética , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , ARN Viral/sangre , Sueroterapia para COVID-19
2.
Biotechnol Bioeng ; 118(6): 2301-2311, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33704772

RESUMEN

The development of highly productive, genetically stable manufacturing cell lines is on the critical path to IND filing for protein-based biologic drugs. Here, we describe the Leap-In Transposase® platform, a novel transposon-based mammalian (e.g., Chinese hamster ovary) cell line development system that produces high-titer stable pools with productivity and product quality attributes that are highly comparable to clones that are subsequently derived therefrom. The productivity distributions of clones are strongly biased toward high producers, and genetic and expression stability is consistently high. By avoiding the poor integration rates, concatemer formation, detrimental transgene recombination, low average expression level, unpredictable product quality, and inconsistent genetic stability characteristic of nonhomologous recombination methods, Leap-In provides several opportunities to de-risk programs early and reduce timelines and resources.


Asunto(s)
Productos Biológicos/metabolismo , Línea Celular , Elementos Transponibles de ADN , Transgenes , Transposasas , Animales , Bioingeniería , Células CHO , Células Clonales , Cricetulus , Humanos , Mamíferos , Ratones , Regiones Promotoras Genéticas
3.
Sci Immunol ; 5(54)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288645

RESUMEN

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, can neutralize the virus. It is, however, unknown which features of the serological response may affect clinical outcomes of COVID-19 patients. We analyzed 983 longitudinal plasma samples from 79 hospitalized COVID-19 patients and 175 SARS-CoV-2-infected outpatients and asymptomatic individuals. Within this cohort, 25 patients died of their illness. Higher ratios of IgG antibodies targeting S1 or RBD domains of spike compared to nucleocapsid antigen were seen in outpatients who had mild illness versus severely ill patients. Plasma antibody increases correlated with decreases in viral RNAemia, but antibody responses in acute illness were insufficient to predict inpatient outcomes. Pseudovirus neutralization assays and a scalable ELISA measuring antibodies blocking RBD-ACE2 interaction were well correlated with patient IgG titers to RBD. Outpatient and asymptomatic individuals' SARS-CoV-2 antibodies, including IgG, progressively decreased during observation up to five months post-infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/sangre , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/sangre , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
Cell Host Microbe ; 28(4): 516-525.e5, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32941787

RESUMEN

B cells are critical for the production of antibodies and protective immunity to viruses. Here we show that patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who develop coronavirus disease 2019 (COVID-19) display early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify convergence of antibody sequences across SARS-CoV-2-infected patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and SARS-CoV.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Neumonía Viral/inmunología , Neumonía Viral/virología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/genética , Formación de Anticuerpos , Betacoronavirus/genética , COVID-19 , Femenino , Células HEK293 , Humanos , Inmunogenética , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Análisis de Secuencia , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
medRxiv ; 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32839786

RESUMEN

SARS-CoV-2-specific antibodies, particularly those preventing viral spike receptor binding domain (RBD) interaction with host angiotensin-converting enzyme 2 (ACE2) receptor, could offer protective immunity, and may affect clinical outcomes of COVID-19 patients. We analyzed 625 serial plasma samples from 40 hospitalized COVID-19 patients and 170 SARS-CoV-2-infected outpatients and asymptomatic individuals. Severely ill patients developed significantly higher SARS-CoV-2-specific antibody responses than outpatients and asymptomatic individuals. The development of plasma antibodies was correlated with decreases in viral RNAemia, consistent with potential humoral immune clearance of virus. Using a novel competition ELISA, we detected antibodies blocking RBD-ACE2 interactions in 68% of inpatients and 40% of outpatients tested. Cross-reactive antibodies recognizing SARS-CoV RBD were found almost exclusively in hospitalized patients. Outpatient and asymptomatic individuals' serological responses to SARS-CoV-2 decreased within 2 months, suggesting that humoral protection may be short-lived.

6.
Curr Protoc Protein Sci ; 95(1): e77, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30265450

RESUMEN

Recombinant proteins, such as monoclonal antibodies, are produced in mammalian cell lines to introduce proper protein folding and post-translational modifications, which are essential for full biological activity. In both the industrial and academic environments, the use of recombinant proteins varies widely and, with it, the method of production. The amount of an antibody needed for a toxicity study is far greater than that needed by a research lab performing cellular assays, and the amount of effort put into the development of the protein will vary accordingly. There is no universal strategy for mammalian expression systems, and scientists often struggle to develop a suitable process from the myriad of choices at each step. Here, we elaborate on the various obstacles encountered when planning high-yield experiments to produce the recombinant proteins of interest. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Expresión Génica , Proteínas Recombinantes/biosíntesis , Animales , Humanos , Proteínas Recombinantes/genética
7.
Ecol Appl ; 17(6): 1656-65, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17913130

RESUMEN

Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.


Asunto(s)
Incendios , Desarrollo de la Planta , Tracheophyta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Ecosistema , Geografía , Dinámica Poblacional , Estados Unidos
8.
Am J Bot ; 89(7): 1113-8, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21665711

RESUMEN

We studied the root distribution and the effects of leachates from the dominant shrub in rosemary scrub, Florida rosemary (Ceratiola ericoides), on germination of seven subordinate rosemary scrub species. For rosemary scrub specialists, (Eryngium cuneifolium and Hypericum cumulicola), germination was suppressed by the leaf and litter leachates. For species that are not found exclusively in rosemary scrub (Liatris ohlingerae, Polygonella basiramia, Paronychia chartacea, and Palofoxia feayi) litter and leaf leachate did not suppress germination significantly. Species limited to gaps in rosemary scrub (E. cuneifolium, H. cumulicola, and Lechea deckertii) showed reduced germination from rosemary leachates while species not limited to rosemary-free gaps (L. ohlingerae and P. feayi) were not affected by rosemary leachates. Rosemary root abundance was greatest near shrubs, at a shallow depth, and at sites not recently burned. As rosemary scrub patches age, rosemary roots are more likely to interact with herbaceous species in gaps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...